手机浏览器扫描二维码访问
是一种用黎曼度量的微分流形。
黎曼流形就是给定了一个光滑的对称、正定的二阶张量场的光滑流形。
给了度量以后,我们就可以像初等几何学中一样,测量长度,面积,体积等量。
流形是一类特殊的连通、豪斯多夫仿紧的拓扑空间,在此空间每一点的邻近预先建立了坐标系,使得任何两个(局部)坐标系间的坐标变换都是连续的。
n维流形的概念在18世纪法国数学家拉格朗日的力学研究中已有萌芽。
19世纪中叶英国数学家凯莱(1843)、德国数学家格拉斯曼(1844,1861)、瑞士数学家施勒夫利(1852)分别论述了n维欧几里得空间理论,把它视为n个实变量的连续统。
1854年德国数学家黎曼在研究微分几何时用归纳构造法给出一般n维流形的概念:n维流形是把无限多个(n-1)维流形按照一维流形方式放在一起而形成的,从此开始流形的拓扑结构及其局部理论的研究。
法国数学家庞加莱在19世纪末把n维流形定义为一种连通的拓扑空间,其中每一点都具有和n维欧氏空间同胚的邻域(被称为庞加莱流形),从而开辟了组合拓扑学的道路。
对流形的深入研究集中在流形上的微分结构与组合结构的存在性、唯一性问题,微分结构与组合结构的关系,流形的各种意义下的分类等问题,20世纪50—60年代做出许多重要结果,近几十年来出现有限维带边流形和无限维流形概念。
流形理论在与其他拓扑理论的相互结合发展中也提出许多问题,其研究仍在继续。
流形上的黎曼度量给定后,我们可以得到一个唯一确定的对称(即无挠)联络,并且它保持黎曼度量。
这个联络称为这个黎曼度量的Levi-Civita联络。
有了联络,我们就可以定义向量场的协变微分和协变导数,从而建立起流形上的微分学。
欧氏空间的联络就是通常意义上的向量函数的微分。
黎曼度量还诱导出曲率的概念,它反映了流形的弯曲程度。
曲率处处为零的流形称为平坦黎曼流形。
欧氏空间就是最常见的平坦流形。
德国数学家高斯最早研究了曲面上的曲率,发现这种曲率是内蕴的,尽管它的定义式不是内蕴的。
喜欢数学心请大家收藏:(aiquwx)数学心
四目道长徒儿,赶尸之道,为师已经全传给你了!齐漱溟徐君明,我蜀山与你势不两立!孙悟空僵尸叔叔聊斋蜀山剑侠传西游记封神榜,错过‘九叔’,没拿到主角模板的徐君明流浪在诸天世界!...
当孙泽挣开眼意识到他穿越的时候他是淡然的,但当他发现他成了一根棒的时候,他就懵逼了。卧槽,老子堂堂华夏兵王,怎么变成了一根棒,还是最粗最大,可大可小那根。从此以后,孙泽的口头禅变成了这样,呔,吃本座一棒。这世界上没有什么是一棒解决不了的问题,如果有那就用两棒—孙泽。等级筑基金丹元婴化神渡劫仙人...
宇哥,你会装逼吗?呵,装逼不敢说有多大的造诣,就是天赋异禀!!夏宇点了根两块五的甲天下,扣着脚丫子一脸淡然。...
我想造车!韩皓一本正经说道。就你周围的人都笑了,其中有人出言讽刺道。别人造的汽车都是用钱买,而你韩皓造的汽车得用命买!面对种种质疑,韩皓依旧不为所动回答。既然如此,让我第一个试驾,就用我韩皓的命替中国民族汽车产业赌一个未来吧!...
创作过13部小说,且通通太监掉了的男人,在现实中,被女读者抓到了!虽然她有妙不可言的催更技能,(和惨不忍睹的逼更手段)但普通作者依然只有0024的概率...
这本书能带你看懂中国历史演进的逻辑中国奇迹持续的原因以及,该如何认知我们的世界角色。在这个关键节点,每个人都在思考未来。我们在思考未来的时候,最重要的事情是对目标的设定。而如何设定目标,取决于你怎么理解自己理解中国理解世界。每个人,都该思考在起伏的浪潮中,一个人怎么认知环境?过去40年,中国为什么能迅速崛起?中国式奇迹能否持续?未来,世界会有怎样的格局?在大环境下,你该扮演怎样的角色?...